内容
さまざまな関係性の構造をPythonで分析する!
ネットワーク分析は、あらゆる「関係性」を分析する学問です。
構造をモデル化することで、ネットワークという言葉から想像しやすいWebやSNSの分析だけでなく、たとえば感染症の伝搬経路を見つけたり、未来の人間関係を予測したりすることが可能です。マーケティングなどの現場でも使用されています。
本書では、ネットワーク構造をもつデータをPythonで分析するための基礎知識を習得できます。
分析には、Google Colaboratory(クラウド上で使用できるJupyter Notebook環境。Colabとも呼ばれる)を用います。ブラウザ上で動くColabは環境構築が不要なため、すぐに実際にコードを試すことができます。また、可視化ツールとしてNetworkXを使用し、さまざまなネットワークをグラフとして視覚的に把握できます。
実際にColabで動かせるプログラムと、そのプログラムによって出力されたグラフが数多く例示しているため、実際にColabでコードを実行しながら理解を深めることができます。
データサイエンスを学ぶ学生はもちろん、企業の広報・企画・マーケティング担当者など、顧客の購買行動やソーシャルネットワークの分析などが必要になった社会人にも役立つ一冊です。