内容
位相幾何学(トポロジー)のなかでも、「基本群」とその延長線上にある「被覆空間」の理論を詳しく解説する。講義やセミナーでの使用を念頭に、具体例や背景を重視して、できる限り丁寧な説明に徹した。幾何学、トポロジーをこころざす学生にすすめたい、待望の入門書。
【本書の特徴】
● 円周の基本群の計算やザイフェルト‐ファン・カンペンの定理は、証明が短く簡明に記述できるものを採用した。
● 被覆空間の定義は、全空間、底空間ともに連結性やハウスドルフ性などを一概に仮定せず、定理ごとに本質的な条件は何かを意識してもらえるよう、都度必要な条件を挙げる形をとった。
● 真性不連続作用と、その軌道空間がハウスドルフになるための十分条件、モノドロミー作用を用いた有限被覆空間の分類について詳しく述べた。
● 具体例を用いて、トーラスの被覆空間の同値類をすべて与えた。
● 用語・記号の統一もかねて、予備知識となる位相空間論と群論の基礎事項について前半で概説を行った。読み進める中で、必要に応じて内容を確認・参照することができる。
● 最終章の第6章では、基本群と被覆空間の応用として、和書での扱いが少ない、組みひも群と配置空間について、入門的内容を解説した。