丸善のおすすめ度
Trees of Hyperbolic Spaces(Mathematical Surveys and Monographs Vol. 282) paper 278 p. 24
Kapovich, Michael,
Sardar, Pranab
著
|
在庫状況
自社在庫有り
|
お届け予定日
3~4日
|
|
|
価格
\34,490(税込)
|
|
|
|
発行年月 |
2024年08月 |
---|
出版社/提供元 |
American Mathematical Society |
出版国 |
アメリカ合衆国 |
---|
言語 |
英語 |
---|
媒体 |
冊子 |
---|
装丁 |
paper |
---|
|
ページ数/巻数 |
278 p. |
---|
|
|
ジャンル |
洋書/理工学/数学/代数学 |
---|
|
|
ISBN |
9781470474256 |
---|
|
商品コード |
1039167534 |
---|
|
|
|
本の性格 |
学術書 |
---|
|
|
|
商品URL | https://kw.maruzen.co.jp/ims/itemDetail.html?itmCd=1039167534 |
---|
内容
This book offers an alternative proof of the Bestvina–Feighn combination theorem for trees of hyperbolic spaces and describes uniform quasigeodesics in such spaces. As one of the applications of their description of uniform quasigeodesics, the authors prove the existence of Cannon–Thurston maps for inclusion maps of total spaces of subtrees of hyperbolic spaces and of relatively hyperbolic spaces. They also analyze the structure of Cannon–Thurston laminations in this setting. Furthermore, some group-theoretic applications of these results are discussed. This book also contains background material on coarse geometry and geometric group theory.